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ABSTRACT 

Sometimes the Bayesian models include a spatial prior which is computationally intractable, because normalizing constants 
are appeared in the posterior distributions. Computing of normalizing constants is a fundamental computational problem 
in many Spatiotemporal Bayesian inferences. Functional Magnetic Resonance Imaging (fMRI) data sets are a popular 
example of huge data sets and big data analytics that their spatial and temporal dependence structures are very complex. 
Therefore, Spatiotemporal Bayesian inferences for analyzing fMRI data are lionized, but normalizing constant problems 
often make these models be computationally problematic. In this paper we have focused on the computational schemes for 
practical Bayesian estimation in binary spatial Ising prior which is one of the problematic priors and is widely used in 
Spatiotemporal modeling of fMRI data. We investigate the new application of Auxiliary Variable method proposed by 
Møller for Bayesian estimation in a Hierarchical Spatiotemporal model including an Ising prior, where the posterior 
involves a normalizing constant. This method avoids approximations such as those in earlier works and also incorporates 
the normalizing constant and external field problems of Ising prior, simultaneously. We explore the performance of the 
method on simulated 3D correlated time series. Our approach does a good performance through the simulations. Also, we 
proceed with real fMRI data set, auditory data from SPM software. 

Keywords: Auxiliary Variable Method, Binary Spatial Ising, Intractable Normalizing Constant. 

INTRODUCTION 

Intractable normalizing constants arise in a number of statistical problems, such as image 
analysis, neural networks, Markov point processes and Markov random fields priors (Møller et 
al., 2006). In Bayesian approach, sometimes the posterior distributions for the parameters of 
interest involve an intractable normalizing constant which is also a function of a parameter, so 
it makes that sampling from Bayesian posterior distributions be problematic. A simple example 
of a distribution with an intractable normalizing constant is the Ising prior (Melnykov, Maitra, 
2010; Fang , Kim, 2012). This prior is used in fMRI Bayesian modeling to consider the spatial 
correlation among the observation.  
Computational aspect of the Bayesian statistical models with intractable normalizing constants 
is a fundamental computational problem for many statistical models (Gelman, Meng, 1998). 
Three common approaches that were used for approximating intractable normalizing constants 
are analytic approximation, numerical integration and Monte Carlo simulation (Evans, Swartz, 
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1995; DiCiccio et al., 1997). Besag (1991) used a Bayesian hierarchical model which included 
Ising prior, and they considered an ad hoc procedure for solving the normalizing constant 
problem (Besag et al., 1991). Heikkinen and Hogmander (1994) used a pseudo likelihood 
function of easily derivable full conditional distributions for approximating the likelihood term 
including an unknown constant (Heikkinen and Hogmander, 1994). Heikkinen and Penttinen 
(1999) tried to find the maximum a posteriori estimate for the interaction function in a Bayesian 
model, where the normalizing constant in likelihood function is unknown (Heikkinen and 
Penttinen, 1999). Among the three common approaches, Monte Carlo methods is widely used 
in statistics (Gelman, Meng, 1998; Green et al., 2002; Dryden, Scarr, 2003; Berthelsen, Møller, 
2002).  
Monte Carlo techniques, such as importance sampling and some of its variations, such as bridge 
sampling and Umbrella sampling, can be used to estimate the normalizing constants in 
distributions. Another Monte Carlo technique that have been used in some papers is path 
sampling (Gelman, Meng, 1998). The Wang and Landau Algorithm, proposed by Fugao Wang 
(2001) is another Monte Carlo method designed to perform a non-markovian random walk to 
build the density of states by quickly visiting all the available energy spectrum (Wang, Landau, 
2008). Zhang (2007) used the Wang-Landau scheme to demonstrate the efficiency of 
simulations via direct computation of the partition function under various macroscopic 
conditions, such as different temperatures or volumes (Cheng Zhang, 2007). 
Thus far, all methods proposed in the literature but one entail approximations that do not vanish 
asymptotically. Auxiliary Variable method, the only method which was introduced by Moller 
(2004), avoids approximations such as those in earlier methods. Indeed, this method introduces 
an Auxiliary Variable x into the Metropolis-Hastings algorithm for the other parameters, so that 
ratios of normalizing constants will be omitted in Metropolis-Hastings ratio, while the posterior 
distributions for the other parameters are retained (Møller, 2006). The typical single-subject 
fMRI experiment runs in this way: A subject in a MRI scanner performs a task in response to a 
stimulus while three-dimensional images of the subject's brain are captured during the time. The 
signal measured in fMRI depends on local blood oxygen and is referred to as the blood 
oxygenation level dependent, BOLD signal (Poldrack et al., 2011). BOLD activity peaks 4 to 6 
seconds after neuronal activity and experiences a marked undershoot after 10 to 12 seconds. It 
returns to baseline after 20 to 30 seconds (Penny et al., 2005). As a result, it is necessary to 
convolve the input functions by a Hemodynamic Response Function, HRF (Borumandnia et al., 
2017). Due to use for pre surgical purposes and for meta-analyses investigations, single-subject 
scanning is popular in the fMRI experiments (Bowman et al., 2008). An Image is divided into a 
regular grid of volume elements, called voxels. The BOLD signal is observed at each voxel and 
at each time point, this leads to an enormous amount of data. These 4-D data sets have a 
complicated structure of correlations (Borumandnia et al., 2017). Due to complex spatial and 
temporal correlation structures of fMRI time series, statistical methods play a crucial role in the 
analysis of fMRI data (Poldrack et al., 2011; Lazar, 2008; Lindquist, 2009). Bayesian approach 
has received considerable attention for modeling of fMRI data (Bowman et al., 2008; Xia et al., 
2009; Woolrich et al., 2004; Smith et al., 2003; Smith and Fahrmeir, 2007; Goldsmith et al., 
2014; Genovese, 2000). The size and complexity of data makes computational feasibility be 
important as well as model efficiency (Zhang et al., 2015) In fact, we are faced with a situation 
where computational issues drive some of the modeling decisions.  
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In the fMRI literature, one of the statistical Bayesian models that incorporate spatial among brain 
responses using Ising prior, have been proposed by Lee and Et al. (2014).  They modeled the 
BOLD response for a single subject with a linear regression model that setting prior distributions 
on different parameters of the model allows to account for the temporal and spatial dependence 
among observations. There is a normalizing constant in the posterior quantity given by the Ising 
which is analytically intractable that writer noted the path sampling (Gelman, 1998) or the 
Wang-Landau algorithm for solving it (Gelman, Meng, 1998; Landau et al., 2004). In addition, 
an external field in the Ising model was specified to incorporate anatomical prior information. 
They used a two-steps procedure proposed by Smith and Fahrmeir (2007) handle the external 
field in binary spatial Ising prior (Smith and Fahrmeir, 2007). If the writhers used the Auxiliary 
Variable method, they could find a solution for the problem of normalizing constant as well as 
the issue of external field. In this way, they could conquer both of those tasks simultaneously. 
This will leads to simplifying of model estimation that is a notable point in fMRI statistical 
modeling. Therefore, according to these advantages, we decide to use the Auxiliary Variable 
method in the process of model estimation. For presenting a new application of the Auxiliary 
Variable method, we estimate Lee’s models by different method in the process of estimation. We 
used the Auxiliary Variable method in this special model as an example of Hierarchical Bayesian 
models including of Ising prior that the mentioned method can be used for them, similarly. 
The rest of this paper is organized as follows. A brief introduction about the Bayesian model and 
the Auxiliary Variable method are presented in the statistical methods, section 2. How to 
generate simulated data and results obtained by applying the method to simulated data and real 
fMRI data, are listed in the section 3. Finally, section 4 involves additional remarks and 
discussion. 

STATISTICAL METHODS 

At first, a brief introduction about the modeling of fMRI data is explained. Following, the priors 
and posteriors quantities for the model of interest are rewired. At last the Auxiliary Variable 
Method will be proposed for using in this special model as an example of Hierarchical Bayesian 
models including of Ising prior which auxiliary variable method can be used for them. 
Regression model 
A linear regression model for the BOLD response of a given voxel is 𝑦𝑦𝑣𝑣 = 𝑋𝑋𝑣𝑣𝛽𝛽𝑣𝑣 + 𝜀𝜀𝑣𝑣 , where X is 
the  T×p covariate matrix and 𝛽𝛽𝑣𝑣=(𝛽𝛽𝑣𝑣1 ,…, 𝛽𝛽𝑣𝑣𝑣𝑣 ) is a p×1 vector of regression coefficients. The 
goal of this analysis is detecting neuronal activation in a voxel which corresponds to identifying 
nonzero 𝛽𝛽𝑣𝑣. Let  𝛾𝛾𝜈𝜈 be binary random variable that indicates whether the voxel is activated by a 
task. That is, the coefficient 𝛽𝛽𝑣𝑣 is equal to zero if 𝛾𝛾𝜈𝜈 = 0 and 𝛽𝛽𝑣𝑣  is nonzero if 𝛾𝛾𝜈𝜈 = 1. So the 
model can be rewritten as 𝑦𝑦𝑣𝑣 = 𝑋𝑋𝑣𝑣(𝛾𝛾𝑣𝑣)𝛽𝛽𝑣𝑣(𝛾𝛾𝑣𝑣) + 𝜀𝜀𝑣𝑣 . 
Priors 
Referring again that the priors mentioned here have been proposed by Lee et al. (2014). The 
temporal dependence between observations for a given voxel was taken into account by 
considering an autoregressive processes on the structure of the error terms in model (3):  

𝜀𝜀𝜈𝜈~𝑁𝑁𝑇𝑇𝑣𝑣(0,𝜎𝜎𝑣𝑣2𝛬𝛬𝑣𝑣). The prior for 𝜎𝜎2 and 𝜌𝜌 were respectively 𝜋𝜋(𝜎𝜎𝑣𝑣2)𝛼𝛼 1
𝜎𝜎𝑣𝑣2

  ,   𝜋𝜋(𝜌𝜌) =

∏ 𝜋𝜋(𝜌𝜌𝑣𝑣)  𝛼𝛼 𝑁𝑁
𝜈𝜈=1 � 𝑈𝑈(−1 < 𝜌𝜌𝜈𝜈 < 1)𝑁𝑁

𝜈𝜈=1 . A binary spatial Ising prior for 𝛾𝛾 parameter allows to 
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incorporate anatomical prior information with a constant external field, parameter 𝜃𝜃0, as well 
as spatial interaction between voxels with parameter 𝜃𝜃1: 𝜋𝜋(𝛾𝛾|𝜃𝜃)𝛼𝛼{∑ 𝜃𝜃0𝛾𝛾𝑣𝑣𝑣𝑣

𝑣𝑣=1 +
𝜃𝜃1� 𝑤𝑤𝑣𝑣,𝑘𝑘𝐼𝐼(𝛾𝛾𝑣𝑣 = 𝛾𝛾𝑘𝑘)}𝑣𝑣~𝑘𝑘 . Parameter 𝜃𝜃1 is the positive parameter to represent the strength of the 

interaction between any two neighbor voxels. The term  𝑣𝑣~𝑘𝑘  means that two voxels 𝑣𝑣 and k are 
neighbors. It can be assumed a uniform prior on 𝜃𝜃1 and 𝜃𝜃0, that is [min 𝜃𝜃0, max 𝜃𝜃0]×[0, max 
𝜃𝜃1]. Also a Zellner's g-prior have been used on regression coefficients (Zellner, 1986).  
Posterior Inference 
The posterior distribution for parameters of interest, obtained by combining the prior 
information and the likelihood function via the Bayes theorem, was provided as follow: 

𝑞𝑞(𝛾𝛾, 𝜌𝜌,𝜃𝜃|𝑦𝑦)  𝛼𝛼 𝜋𝜋(𝛾𝛾|𝜃𝜃) 𝜋𝜋(𝜃𝜃) 𝜋𝜋(𝜌𝜌)  ∏  𝑁𝑁
𝜈𝜈=1

1

(1+𝑇𝑇𝜈𝜈)
𝑞𝑞𝑣𝑣
2

1

𝛬𝛬𝑣𝑣
1
2
� �𝑦𝑦𝑣𝑣 − 𝑋𝑋𝑣𝑣′ 𝛽̂𝛽𝑣𝑣�

′
𝛬𝛬𝑣𝑣−1 �𝑦𝑦𝑣𝑣 − 𝑋𝑋𝑣𝑣′ 𝛽̂𝛽𝑣𝑣��

−𝑇𝑇𝑣𝑣2
        (1) 

According to (1), conditional posteriors can be reached. Details can be find in Lee’s paper (Lee 
et al., 2011). For inference, component-wise Markov Chain Monte Carlo (MCMC) sampling 
techniques can be used to sample the individual parameters conditional upon the others. The 
metropolis Hastings ratio for parameters 𝜃𝜃 is 

𝑍𝑍�𝜃𝜃1𝑗𝑗,𝜃𝜃0𝑗𝑗� 𝑒𝑒𝑒𝑒𝑒𝑒�𝜃𝜃1𝑗𝑗
∗ � 𝑤𝑤𝑣𝑣,𝑘𝑘 𝐼𝐼(𝛾𝛾𝑣𝑣,𝑗𝑗=𝛾𝛾𝑘𝑘,𝑗𝑗)

𝑣𝑣~𝑘𝑘
� 𝐼𝐼(0<𝜃𝜃𝑗𝑗1

∗ <𝜃𝜃1  𝑚𝑚𝑚𝑚𝑚𝑚) 𝐼𝐼(𝜃𝜃0 𝑚𝑚𝑚𝑚𝑚𝑚<𝜃𝜃𝑗𝑗0
∗ <𝜃𝜃0 𝑚𝑚𝑚𝑚𝑚𝑚)

𝑍𝑍𝑗𝑗�𝜃𝜃1𝑗𝑗
∗ ,𝜃𝜃0𝑗𝑗� 𝑒𝑒𝑒𝑒𝑒𝑒�𝜃𝜃1𝑗𝑗� 𝑤𝑤𝑣𝑣,𝑘𝑘 𝐼𝐼(𝛾𝛾𝑣𝑣,𝑗𝑗=𝛾𝛾𝑘𝑘,𝑗𝑗)

𝑣𝑣~𝑘𝑘
� 𝐼𝐼(0<𝜃𝜃𝑗𝑗1<𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚) 𝐼𝐼(𝜃𝜃0 𝑚𝑚𝑚𝑚𝑚𝑚<𝜃𝜃𝑗𝑗0

 <𝜃𝜃0 𝑚𝑚𝑚𝑚𝑚𝑚)
 
𝑝𝑝𝜃𝜃𝑗𝑗(𝜃𝜃𝑗𝑗|𝛾𝛾,𝑦𝑦)

𝑝𝑝𝜃𝜃𝑗𝑗(𝜃𝜃𝑗𝑗
∗|𝛾𝛾,𝑦𝑦)

             (2) 

The ratio 
𝑍𝑍𝑗𝑗�𝜃𝜃𝑗𝑗,𝜃𝜃0𝑗𝑗�

𝑍𝑍𝑗𝑗�𝜃𝜃𝑗𝑗
∗,𝜃𝜃0𝑗𝑗�

 is analytically intractable and should be solved for estimating proses. In the 

following, we go over the Auxiliary Variable method, then we will use it to find a solution for 
the intractable normalizing constant.  
Auxiliary Variable Method 
The Auxiliary Variable method is an efficient Markov chain Monte Carlo approach for 
distributions with intractable normalizing constant. The idea behind this approach is based on 
two point: it adds an Auxiliary variable in the Metropolis-Hastings algorithm and chooses the 
proposal distribution so that the algorithm does not depend upon the unknown normalizing 
constant (Møller et al., 2006). 

To sample from the posterior 𝜋𝜋(𝜃𝜃|𝑦𝑦) 𝛼𝛼 𝜋𝜋(𝜃𝜃)𝜋𝜋(𝑦𝑦|𝜃𝜃) that the likelihood is 𝜋𝜋(𝑦𝑦|𝜃𝜃) = 𝑞𝑞𝜃𝜃(𝑦𝑦)
𝑍𝑍𝜃𝜃

,   The 

Metropolis-Hastings ratio is  𝐻𝐻(𝜃𝜃′|𝜃𝜃) =
𝜋𝜋(𝜃𝜃′)𝑞𝑞𝜃𝜃′( 𝑦𝑦)𝑃𝑃(𝜃𝜃|𝜃𝜃′)  

𝜋𝜋(𝜃𝜃)𝑞𝑞𝜃𝜃(𝑦𝑦)𝑃𝑃(𝜃𝜃′|𝜃𝜃)  
∕
𝑍𝑍𝜃𝜃′
𝑍𝑍𝜃𝜃

 where  𝑃𝑃(𝜃𝜃′|𝜃𝜃) is the proposal 

density for 𝜃𝜃. The normalizing constant 𝑍𝑍𝜃𝜃 is not available analytically and an exact computation 
is not feasible. For solving this problem, Møller introduced an Auxiliary variable 𝑥𝑥 with 
conditional distribution 𝑔𝑔(𝑥𝑥|𝜃𝜃,𝑦𝑦) and constructed a Metropolis-Hastings chain with target 

distribution 𝜋𝜋(𝜃𝜃, 𝑥𝑥|𝑦𝑦)𝛼𝛼𝜋𝜋0(𝜃𝜃)𝑔𝑔(𝑥𝑥|𝜃𝜃, 𝑦𝑦) 𝑞𝑞𝜃𝜃(𝑦𝑦)
𝑍𝑍𝜃𝜃

. This chain proposes a new state (𝑥𝑥′,𝜃𝜃′) jointly by 

drawing 𝜃𝜃′ from  𝑃𝑃(𝜃𝜃′ |𝜃𝜃, 𝑥𝑥) and then 𝑥𝑥′ from 𝑓𝑓( 𝑥𝑥′|𝜃𝜃) =
𝑞𝑞𝜃𝜃′( 𝑥𝑥′)

𝑍𝑍𝜃𝜃′
 .  An appropriate choice for 

Auxiliary variable density 𝑓𝑓(𝑥𝑥|𝜃𝜃,𝑦𝑦) and proposal density  𝑃𝑃(𝜃𝜃′|𝜃𝜃)  cause the algorithm to have 
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a good mixing and convergence properties (Møller et al., 2006). One approach is to make 

𝑓𝑓(𝑥𝑥|𝜃𝜃,𝑦𝑦) = 𝑞𝑞𝜃𝜃�(𝑥𝑥 )
𝑍𝑍𝜃𝜃�

. Then the problematic normalizing constant cancels in the Metropolis-

Hastings ratio H(𝜃𝜃′ , x′|𝜃𝜃, x) =
g�x′�𝜃𝜃′,y� q𝜃𝜃′(y)q𝜃𝜃(x)π0�𝜃𝜃′�P(𝜃𝜃|𝜃𝜃′,x′)

g(x|𝜃𝜃,y)q𝜃𝜃(y)q𝜃𝜃′(x′) π0(𝜃𝜃)P(𝜃𝜃′|𝜃𝜃,𝑥𝑥)
  As mentioned before, 

normalizing constants problem sometimes occurs for Bayesian hierarchical models, such as 
Spatio-Temporal model with Ising prior for fMRI time series data.  In case of Ising prior, 
independent normal distributions can be used for proposal densities of 𝜃𝜃0 and 𝜃𝜃1. This choice 

leads to 
𝑃𝑃(𝜃𝜃|𝜃𝜃′)
𝑃𝑃(𝜃𝜃′|𝜃𝜃)

= 1. Also uniform priors can be assumed on 𝜃𝜃0 and 𝜃𝜃1, where 𝜃𝜃 ∈Ɵ=[min 𝜃𝜃0, 

max 𝜃𝜃0]×[0, max 𝜃𝜃1]. So Metropolis-Hastings ratio reduces to H(𝜃𝜃′, x′|𝜃𝜃, x)=1[𝜃𝜃′ ∈

Ɵ]
q𝜃𝜃�(x′ ) q𝜃𝜃′(y)q𝜃𝜃(x)

q𝜃𝜃�(x )q𝜃𝜃(y)q𝜃𝜃′(x′) 
  , That 1[𝜃𝜃′ ∈ Ɵ] is an indicator function. In practice, the exact values of min 

𝜃𝜃0 < 0, max𝜃𝜃0>0 and max 𝜃𝜃1 have very little influence on the chain, so ranges (-1, +1) for 
𝜃𝜃0 and and [0; 1) for 𝜃𝜃1 are quite adequate (Møller et al., 2006; Lee et al., 2014).   

RESULTS 

Simulation Study 
In this section we report the results of a simulation study undertaken to validate the model and 
estimation procedure based on Auxiliary Variable method. For different values of 𝜃𝜃0 and 𝜃𝜃1 we 
generated 5 data sets based on 10*10*10 activated-inactivated 3-dimentional images. We 
performed a posteriori inference on these data sets using the defined model with the Axillary 
Variable method in the estimation process. 
Data generation process is as follow. The auto-regression coefficient 𝜌𝜌𝜈𝜈, is generated from 
Uniform (-1; 1) for each voxel. Also parameter 𝜎𝜎 set fix, 𝜎𝜎=3 for all of voxels. We consider 
different scenarios for 𝜃𝜃0 and 𝜃𝜃1 that have been shown in table 1. Given 𝜃𝜃0 and 𝜃𝜃1, we generate 
a 3-D activated-inactivated lattice cubic of size 10*10*10 from (8) formula. We used a 3-
dimensional neighborhood which contains the 6 directly adjacent voxels in 3-dimensional 
space. Commonly used neighborhood 3-dimentional structures for voxels are 6-neighbors (if 
voxels share a face), 18-neighbors (if voxels share face and edge) and 26-neighbors (if voxels 
share face, edge and corner).  The weights 𝑤𝑤𝑣𝑣,𝑘𝑘 were taken to be the same for all voxels. 
Simulating from Ising models can be done using a perfect sampling technique or MCMC 
approach (Novotny, 1999). A Monte Carlo algorithm for a 2-dimensional Ising model is 
proposed by Gunnar Ingelman (Ingelman, 2009). We have extended their algorithm for 3-
dimensional simulation of Ising model. Given parameter 𝛾𝛾𝜈𝜈, we simulate a time-series 𝑦𝑦𝜈𝜈 in each 
voxel 𝜈𝜈 of length 54 from the model. We built a design matrix by convolving a stimulus function 
for a block design with a Poisson HRF. The baseline level in a human brain and amplitude of 
activation in response to a stimulus at each voxel 𝜈𝜈 are assume 300 and 10, respectively. 
Parameter 𝛾𝛾𝜈𝜈 indicates if 𝛽𝛽𝜈𝜈 is equal to 0 or not. If 𝛾𝛾𝜈𝜈 is 1, we simulate data from the model with 
𝛽𝛽𝜈𝜈 = (300,10)𝑇𝑇, otherwise data was simulated with 𝛽𝛽𝜈𝜈 = 𝛽𝛽𝜈𝜈,0 = 300.  
For each simulated data set, the model with the Auxiliary Variable approach was applied to 
detect the activated-inactivated voxels. We classified a voxel as active one if 𝑝̂𝑝(𝛾𝛾𝜈𝜈 = 1) > 0.8722 
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(Raftery, 1996). The estimation results are based on 10000 draws (with 2000 burned) from the 
posterior using our MCMC algorithm with Auxiliary Variable method. 
Sensitivity analysis 
We performed a sensitivity analysis to study how different values of 𝜃𝜃0 and 𝜃𝜃1  affect the 
performance of the model with the Auxiliary Variable approach. In table 1, accuracy and FPR 
rates are reported for simulated data sets. Accuracy, the percentage of voxels that are correctly 
identified, and False Positive Rate (FPR), the proportion of active voxels falsely identified relative 
to all the inactive voxels, averaged over the 5 replicates. 

Table 1. Simulated data: accuracy and FPR for different choices of 𝛉𝛉𝟏𝟏 and 𝛉𝛉𝟎𝟎 parameters in 
Ising prior. Results are in percentages. 

 𝜃𝜃1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Accuracy 95.92 95.92 97.64 98.38 98.87 99.16 98.16 

FPR 1.11 1.46 0.66 0 2.58 10 4.36 
 𝜃𝜃1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Accuracy 95.67 96.20 96.42 96.12 96.13 96.70 97.10 
FPR 1.35 1.08 0.53 0.94 0.00 0.00 0.00 

The result shows that our approach have had a good performance on simulated data sets. Result 
in table 1 imply that setting larger values of the parameter 𝜃𝜃1 in the Ising prior distribution for 
the β's, may moderately impact on the performance and lead to a higher accuracy. The best 
performance is when the parameter  𝜃𝜃1  is nearly 0.6 in a 3-Dimentional data set. The FPR rates 
are relatively low for different values of  𝜃𝜃1. In addition, larger values of 𝜃𝜃0 lead to reducing of 
accuracy. In this case, FPR ratios are almost close to zero. In general, we can say the approach 
has an acceptable performance; at least 96 percent of accuracy in different situations. 

 
Figure 1:  Simulated data with block design, first 3 slices of randomly selected 3-D simulated 

lattice cubic: True map of the activation indicators γ (first column); Predicted map of the 
activation indicators γ (second column); The posterior mean map of β (third column); The 
posterior mean map of 𝝆𝝆  (forth column); Scatter plot of posterior mean estimates vs. true 

values for 𝝆𝝆  parameter in the slices. 
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In figure 1, we have shown first 3 slices of 10 slices of a randomly selected 3-D simulated lattice 
cubic of our simulated data set with 𝜃𝜃0=0 and 𝜃𝜃1=0.3. In other words, it is a true map of the 
activation indicators γ for the first 3 slice of 10 slices of this data. The posterior activation map 
for these slices of dataset have been displayed in second column of figure 1. By comparing the 
first two columns with each other, it is obviously that the approach does a good performance at 
detecting the active voxels. In this simulated data set, a small number of active voxels are falsely 
identified as inactive (0.88 %). Posterior mean map of β and 𝜌𝜌 parameters for the slices of dataset 
have been shown in third and fourth columns, respectively. In the last columns scatter plot of 
posterior mean estimates vs. true values for 𝜌𝜌  parameter in the slices. This plot shows that our 
approach produces good estimates, close to the true values of 𝜌𝜌 parameters.  
Real Data Example 

• Auditory data 
Here we apply our technique to the data set collected by Geraint Rees in Functional Imaging 
Laboratory (FIL) which is known as the mother of all experiments, available at 
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/. The experiment was performed on a single 
subject, under 2 different conditions, rest and auditory stimulation. Auditory stimulation was bi-
syllabic words presented binaurally at a rate of 60 per minute. The subject was scanned during 
6 blocks, with each block lasting 42 s. 96 acquisitions were made (TR=7s). We discarded the 
first 12 scans, and we did our analysis on leaving 84 scans. Data set comprises whole brain 
BOLD/EPI images acquired on a modified 2T Siemens MAGNETOM Vision system. Each 
acquisition consisted of 64 contiguous slices (64×64×64 3×3×3 mm3 voxels). The posterior 
activation maps overlay on the structural MRI images for slices 23 up to 28 of brain, containing 
some parts of the Temporal lobe, are shown in figure 2. As images show activations appear 
mainly in the area, which is known to be involved in the perception of auditory cortex. 

 
Figure 2: Real fMRI data: A transverse plane of the slice number 23 up to 28 containing the 

temporal lobe. posterior activation maps for the slices, obtained by assigning value 1 to those 
voxels with 𝑷𝑷(𝜸𝜸𝒗𝒗 = 𝟏𝟏|𝒚𝒚) > 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖, and value 0 otherwise. 

The results for the other slices of whole brain and the code implementing our methodology are 
available upon request. Our Matlab code performed 10000 MCMC iterations in 7 hours for real 
data, on a computer with CPU 3.30 GHz, and 4 GB of RAM.  

DISCUSSION 

In this paper we used the hierarchical Bayesian Spatio-Temporal model for fMRI data introduced 
by Lee and et al. (2014). Also we merged the Auxiliary Variable method in estimation proses of 
the model. They imposed a hyper-prior on the parameter of the Ising model that led to appearing 

z=23 z=24 z=25 z=26 z=27 z=28

http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
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of normalizing constant in posterior inference. A variety of approximate methods and 
computational schemes have been proposed for spatial Ising priors, but it seems unclear which 
one is preferred for practical use. The usual approach is to replace normalizing constant by an 
estimate using Markov Chain Monte Carlo methods, in order to achieve an equilibrium 
distribution close to real distribution. In addition, the other methods for Monte Carlo 
approximation of normalizing constants is computationally very demanding, requiring many 
samples and needed to be repeated for each iteration of the Metropolis-Hastings algorithm. In 
our work we also reviewed the Auxiliary Variable method for normalizing constant that was 
introduced by Moller and Et al. (2006). Application of the Auxiliary Variable method to the 
hierarchical models, with the normalizing constant, had been suggested by Moller et al., (2006). 
So we demonstrated how to use the Auxiliary Variable method in the Spatio-Temporal model 
consist of Ising prior, where the normalizing constant is intractable. A considerable advantage 
of our work is that we did simulation study on 3-dimentional data sets. In real situations, the 
voxels overlay a three-dimensional lattice, so slice-by-slice analyses are known to have some 
limitations. In previous works that we looked into, simulation was performed on 2-dimentional 
data sets. The simulation from 3-dimentional Ising model is not easy to do and it is often ignored. 
The applications we have presented here show that the method has a good performance in 
different values of the 3-dimentional Ising’s parameters. 
Thus far, usual methods for solving the problem of normalizing constant, are based on finding 
an approximation for it, indeed the Auxiliary Variable method does not. Estimation of 
normalizing constant ratios requires extensive MCMC runs to estimate before the analysis can 
start. By using the Auxiliary Variable method, we can remove this estimation, so this method will 
be somewhat easier to setup among the others. Another motivation for doing present study was 
that Auxiliary Variable method combines two aspects into a single framework, the problem of 
normalizing constant and the external field. Our results on real fMRI data have confirmed the 
result of the previous studies on real data. 
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