

2528-9705

Örgütsel Davranış Araştırmaları Dergisi
Journal Of Organizational Behavior Research

Cilt / Vol.: 8, Sayı / Is.: S, Yıl/Year: 2023, Kod/ID: 23S0-1014

© 2023 Journal of Organizational Behavior Research. Open Access - This article is under the CC BY license
(https://creativecommons.org/licenses/by/4.0/)

AN INTERACTIVE TRACING SOFTWARE REQUIREMENT AND RESOURCES TOOL TO

REDUCE COST AND REDUNDANCY

Marziyeh ANDISHEH1*

1 *Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.

*Corresponding Author
E-mail: faribaandisheh@gmail.com

ABSTRACT

Planning for Software development has been one of the challenging phases of Software Development Lifecycle (SDLC).
Proper planning for software development can assure the quality of software product. Traditional SDLCs where
development phase starts upon completion of order and setting deliverables by customers have replaced by procedural and
iterative that delivery is on module-basis. These strategies are common as they are budget-saving, require less time to deliver
and do not require having all the requirements ready at the beginning. In traditional way, planning and tracing software
requirement took place by seniors and experts in product feasibility planning which was costly as well. Alternatively, in
new strategies, planning is based on resource sharing and tracing among different projects by non-experts to reduce costs.
However, available platforms in the market are having complicated menus and not interactive enough (mainly text-basis)
to regular IT staffs to plan and trace for their projects requirements and resources and simply find the impactful ones.

Keywords:. requirements traceability, interactive, cost, and redundancy

INTRODUCTION

THROUGHOUT the software lifecycle, there are many decision situations involving limited

resources(Boehm 1984). Therefore, planning for software development requires analysis based

on systems software engineering. It is also requires condition and needs determination to ensure

that the final product (software prototype) meet objectives and requested deliverables by

customers. In the IT industry, the level of success in a software development project is highly

depending on how well it has been planned. It is also necessary to properly plan for software’s

project requirements and resources considering project’s limited budget.

Software requirement planning has been considered as one of the most critical phases in

Software Development Life Cycle (SDLC). A proper planning for requirements of a software

development project, not only can facilitate developers and assist them to meet the deadlines, but

also can reduce project costs. It is also possible to avoid requirement request conflicts using

proper planning and facilitate to reuse the requirements available in inventory or those which

are engaged in other phases of project. It is possible to reuse requirements that they have used

for projects with partially similar requirements to reduce the cost. However, requirement

planning has been always a challenging task as currently available tools have complicated User

Interfaces (UIs). They are not interactive enough to trace the requirements in a simple way and

https://creativecommons.org/licenses/by/4.0/
mailto:faribaandisheh@gmail.com

Örgütsel Davranış Araştırmaları Dergisi
Journal of Organizational Behavior Research
Cilt / Vol.: 8, Sayı / Is.: S, Yıl/Year: 2023, Kod/ID: 23S0-1014

2

find their impacts on the overall project completion in an easy way so a regular user can simply

use it.

Tracing software requirement considers as one of the possible solutions to efficiently reusing

software requirements and allocating resources. This area includes requirement management

within software engineering. It includes documents showing the history of every individual of

the resources and their sources. The term “Traceability” concerns with the percentage which is

showing ability of tracing a particular resource(Ramesh and Jarke 2001). In other words, if a

resource is highly traceable means, it would be possible to access and check the availability of

that particular resource. Tracing tools are usually able to answer such questions: where

requirements are derived from, how they are satisfied, how they are tested, and what impact will

result if they are changed.

Requirement elicitation or requirement gathering is a practice to collect different requirements

from users, customers and stakeholders (Sommerville and Sawyer 1997). However, it is not

possible to only rely on the requirements asked to these three groups by asking them. By using

requirement traceability, it is possible to trace back requirement from different people and

through observation or questionnaire. It is also possible to prioritize the requirement using

designed tools for this purpose and check the reasons that has required in first place.

As mentioned above, requirement traceability involves with relationships between different

requirements and documenting the history of resources. It can overall enhance the quality of

products and it is able to manage the changes. It is necessary to trace the relationships of

requirements in addition to tracing requirements individually. It should also be possible to trace

users and groups related to every particular requirement.

Interaction with computers can be done through a UI. Traditional UIs were text-basis where

recent UIs are mainly designed on visual-basis. They are using graphics, charts and figures to

show information and they may provide feedback if a user aims to interact with them. Interactive

UIs are easier to learn and more user-friendly. They may give a non-expert user to understand

and effectively use with the software. The remainder of this paper is organized as follows: Section

II presents the background on some related papers about the requirement traceability and some

developed traceability tools. Section III describes the program in which the method was

applied. Section IV shows the design of system. In section V you will see the results and some

insights. Finally, we draw our conclusion and future work in Section VI.

RELATED WORKS

Papers

There are many researches related to software requirement traceability. In these researches

algorithms proposed to trace software requirements. For instance Gotel et.al (Gotel and

Finkelstein 1994) proposed to define pre-requirements specification (pre-RS) traceability and

post-requirements specification (post-RS) traceability to have better evaluation and track of

changes. They proposed a system with two tracing engine.

In another research, Asuncion (Asuncion, Asuncion et al. 2010) proposed and designed a tool

with topics modelling feature. In their system, topics can be grouped based on their keywords

3

and the system could enhance the requirement tracing strategy. Asuncion et.al (Asuncion,

François et al. 2007) designed an end-to-end tracing software by focusing on both requirements

traceability and process traceability.

Based on Winkler et al. (2010) software requirement tracing can be studied from five aspect

including : Trace integration, Trace recording, Trace maintenance(Chen and Chou 1999),

Economic aspects(Egyed 2006)and Human aspects(Alexander 2002). Researches such as

(Maletic, Collard et al. 2005) were focused on tool integration where other researches (Pohl

1996, Pinheiro 1997, Mohan and Ramesh 2002, Munson and Nguyen 2005) were more on

specialized tools (Process-centered, Object-oriented, Rationale-centered and Code-centered).

In regards to trace recording, researches can be categorized into 4 aspects which are Structural

Rule-based (e.g. (Richardson and Green 2004, Egyed and Grünbacher 2005)), Linguistic Rule-

based (e.g. (Kaindl, Kramer et al. 1999, Grechanik, McKinley et al. 2007)), Based on

information-retrieval (e.g. (Antoniol, Canfora et al. 2002, och Dag, Regnell et al. 2002)) and

Fully automated (e.g. (Whittle, Van Baalen et al. 2001, Gervasi and Zowghi 2005). Although,

there are available solutions and software in the current market such as Doors(Hayes, Dekhtyar

et al. 2006), Rational Requisite (Nawrocki, Jasiñski et al. 2002)and CaliberRM(Wiegers 1999),

they are lacking in interactivity of user interface evidences by researches such as (Garcia and

Paiva 2016) and (Shah and Patel 2014). Garcia (2016) believed that low level of interactivity

and simplicity in software traceability apps can be simply found by looking at their complex

menus and designs. He believed that an interactive interface would enhance the simplicity and

give the chance to non-professional software developers to trace software requirements as well.

Tools

There were also some available solutions and software in the current market that will be

reviewed to explore the potential gap that this project aims to fill in. Some these products have

reviewed below:

DOORS

Rational Dynamic Object Oriented Requirements System (DOORS) is a software requirement

tracing, planning and management tool developed in early 1990s. Its front end can only run on

windows and its back-end runs only on Linux. It works with a programming language that has

specifically designed for this platform. It was initially designed in the ministry of defense in UK

on 1991 and its first commercial version of that is released on 1993. DOORS is capable define

links between requirements and trace them during the project(Zisman, Spanoudakis et al.

2003). Although DOORS’s designed based on a tabular view, it is yet not much interactive and

simple to understand. The traceability links for the objects (according to defined requirements)

can be created.

Rational Requisite

It is software which is firstly released on 1985 based on Ada programming language. The goal

of designing this system is to increase the productivity and can be run under different platform.

This software can facilitate requirements tracing and supports different types of compilation.

The architecture of this software is optimized and provides independent 64 bit data channels.

Örgütsel Davranış Araştırmaları Dergisi
Journal of Organizational Behavior Research
Cilt / Vol.: 8, Sayı / Is.: S, Yıl/Year: 2023, Kod/ID: 23S0-1014

4

This is designed mainly to support iterative development. It can also support requirement

management and can trace them based on experience.

CaliberRM

It is a requirement management system that is initially designed to assure that the software

product meets the deliverables set by clients(Lu, Chang et al. 2008). It can enable managers and

developers to increase software quality. It is also capable to provide communication and

collaboration between system components. Furthermore, this system has additional features to

what has provided by its competitors in the market including repository control and planning

for requirement using different types of SDLC. It is also capable to trace and perform impact

analysis on software requirements. Although this web-based software is designed to be visual

and able to generate visual statistical reports on requirements.

Cradle

Cradle is a tool that can manage software needs and requirements. The advantage of this

software over its alternatives available in the market is its flexibility to users where they can

define the functionalities on their own(De Gea, Nicolás et al. 2012). It can also perform analysis

on users’ needs and load information from external resources. It is fully supporting traceability

across the entire lifecycle. This tool can support resource and requirement sharing between

projects. However, it has complex menus requires trainings.

iRise

Is a software to trace the requirement which provides a cloud-based features(Schwaber, Leganza

et al. 2006). It is initially founded on 1996. It has drag and drop features layouts for different

scenarios. In this system users may create custom User Interface elements and components.

Using iRise users are able to work on the same project simultaneously, collaborate and add

comments. They are able to trace software requirements and see their impact on time-basis.

MATERIALS AND METHODS

This research aims to answer the research questions through a prototype and based on

experiments’ results. It will use quantitative method to collect the results and analyze those using

numbers.

The prototype will be designed using Rapid Application Development (RAD) because:

RAD is iterative so it is a suitable choice for module-based software development.

RAD can give us the opportunity to make the necessary changes in design (if required) within

the development phase. This research contains 5 phases as shown in Figure 1 that would be done

based on time plan as shown below:

Literatu
re

Review

Design
Instrum

ent

Data
Collecti

on

Data
Analysis

Result
Present

ation

5

Figure1. Project phases

To follow RAD cycle for designing and developing the proposed prototype, we will firstly plan

and set our requirements such as what is necessary for software development, survey

questionnaires and our target group of participants. Design Instrument:

As mentioned, we may change the design within the construction (development) phase

benefiting from RAD advantages. Each module of the prototype will be designed separately and

an integrated version will be released by combining modules together.

Data collection:

Data collection for this study will be quantitative (using questionnaire). The data collection part

would be done using based on a questionnaire.

Data Analysis:

An analysis will be conducted on the data collected and the results presented using texts and

visual elements (graphic and charts) where necessary. This phase will be done iteratively

according to RAD cycle. The results will be statistically evaluated to show the research output.

The results of test for different cases of software development will be studied under two groups

(demography) of participants:

1- Expert software requirement planners

2- Regular software developer

In order to narrow down the testing process we would focus more on the population sampling

including people who are already in the IT industry. Due to the open nature of this study, the

selection of respondents will not be based on any specific age or gender. The study will focus

more on experts who were using traditional requirement tracing software and comparison to

the proposed solution.

Result presentation:

Finally, we will combine and present the results and evaluate how they can support and answer

the research questions.

System design

For detailed management, the resources of a project, as mentioned before, are as followed:

Time

Human Resources (Skills)

Computer Hardware Resources

Software Resources

Budget

The requirements of the project determine the time and required skills. The skills rely in the

people, the project team members. On the other hand, the experience of the team members can

affect the time. The team members require software to develop the project. And likewise, the

Örgütsel Davranış Araştırmaları Dergisi
Journal of Organizational Behavior Research
Cilt / Vol.: 8, Sayı / Is.: S, Yıl/Year: 2023, Kod/ID: 23S0-1014

6

software need hardware resources to be executed. These last three resources require budget. This

project should be able to trace and manage all of the resources and their relations to each other.

Their inter-relations are show in Figure 2.

Figure2. inter-relations of project resources.

For keeping the track of the team members, software and hardware resources a tracing system

is required on the workstations. This tracing system should record the software and hardware

resources, which in return, shows how the team members are using the resources to finish the

project.

The overall architecture of the application being developed for this project is presented in Error! R

eference source not found..

7

Figure 3. The overview of the system architecture

The system components are as followed:

• Main Application for managing and tracing the resources.

• A tracing application to be installed on the resource computers.

• The central database for storing and retrieving data.

Business Rules

• The user of the program should be able to define a project in the application.

• The team members' data like their names, skills, velocity of the skills and daily salary

should be entered.

• Their salary can determine a percentage of the required budget of the project.

• The hardware for developing the project, like workstations or other types of needed

hardware should be listed and their price should be entered in the application. Some of

the project budget will be spent on the hardware which should be calculated precisely.

• The software that the team uses to develop the project that is available on each

workstation should be entered. Another percentage of the budget spends here.

• The requirements of the project and the needed time and skills for implementing them

should be entered separately.

• The people should be assigned to the requirements. This depends on the project manager

preferences and each team member skills.

• The velocity of implementing the requirement is important, because it determines the

required time. For instance, if 100 skill velocity-time are needed, it means 20 hours of

work times 5 velocity of developing (100 skill velocity-time = 20 hours * 5 velocity).

Using this formula, the higher the velocity, the less time required for finishing the

requirement.

• The status of the requirements should be known any time during developing the project.

They should have 3 stages: To do, In Progress, Done. After done, the actual time is

calculated.

• The application should be able to monitor how the team members use their time and

resources for implementing the project. Thus, a Windows Service application should be

developing for sending the hardware status and list of running software on each

workstation every 5 minutes.

• Any changes to the resources and their effect on other resources should be shown in the

application.

Örgütsel Davranış Araştırmaları Dergisi
Journal of Organizational Behavior Research
Cilt / Vol.: 8, Sayı / Is.: S, Yıl/Year: 2023, Kod/ID: 23S0-1014

8

• The reports of status and resulting calculations should be appealingly presented to the

user.

Defining a Project

There are two aspects to be considered while defining the project. The time is represented in

Figure4.

Figure 4. Project time management.

The different aspects of budget of the project is shown in Figure 5.

Figure 5. Project budget management.

1. Define project:

a. Add name and description,

b. Add allocated budget,

9

c. Add start time.

2. Define available people and their skills:

a. Add project members' info,

b. Add their skills and their level of experience in the skill (the more experience, the

more agile they can implement the requirement),

c. Add their daily salary.

3. Define available hardware and software:

a. Add each available workstation,

b. Add the available software packages on each workstation,

c. Specify budget required for utilizing them.

4. Define project requirements:

d. Define each requirement,

e. Specify estimated time and skill experience for the requirement.

f. Assign the requirement to the project members,

g. Assign needed hardware and software to the member,

5. Calculate the overall budget and time:

a. Budget based on recurring and one-time costs,

b. Time based on the calculated time of each requirement.

Each requirement is divided to a few tasks. We keep track of each task in the project. This is

shown in Figure 6.

Figure 6. A Requirement and its tasks

Örgütsel Davranış Araştırmaları Dergisi
Journal of Organizational Behavior Research
Cilt / Vol.: 8, Sayı / Is.: S, Yıl/Year: 2023, Kod/ID: 23S0-1014

10

RESULTS AND DISCUSSION

After collecting the answers from the participants, the results are as followed:

Average of question 1: 7.8

Average of question 2: 7.6

Average of question 3: 6.8

Average of question 4: 6.2

Average of question 5: 8.2

Average of question 6: 7.8

Average of question 7: 6

Average of question 8: 8

Average of question 9: 5.2

And the total average of 9 questions is 7.07 that shows is above the average value and is

considerable. It should be considered that question 10 is open question and filled by the

respondent’s comments and based on these comments the limitation of the system can be found.

Products Comparison

Table 1. Product comparison

Product Trace Cloud-

based

Real-

Time

Collaboration Resource

Sharing

Monitoring

Resources

DOORS ✓ ✓

Rational

Requisite

✓ ✓ ✓

CaliberRM ✓ ✓

Cradle ✓ ✓ ✓

iRise ✓ ✓ ✓ ✓ ✓ ✓

This Project ✓ ✓ ✓ ✓

This product has the following features and abilities:

• Adding projects, requirements and tasks.

• Adding all resources including budget, estimated time, members, hardware and software.

• Monitoring the people and their usage of hardware and software.

• Real-time estimate of remaining time and budget.

• Resources sharing between the people working on the project.

11

Based on what has set as this research aims and objectives, it will be expected to get the results

as below:

1. A software prototype with interactive features and UI. This software will be easier to

understand and more learnable for users in compare to similar available software

products in the market.

2. An evaluation and estimation on software development cost reduction using the designed

prototype. In another word, the impact of using this software prototype on cost reduction

for companies will show how impactful it can be in a tangible way.

3. The designing tool will avoid redundancy in software requirement planning. As a result,

we will not see any redundancy as an outcome of using this software prototype.

CONCLUSION

 In summary of what has mentioned in this proposal, this research aims to design an interactive

software requirement tracing tool and investigate its benefit on companies cost reduction and

redundancy avoidance. It will investigate the outcome through a set of questions to be answered

by experts in requirement planning and regular software developers who have used non-

interactive available requirement tracing tools available in the market comparing to what has

developed as a prototype in this project.

Base on the objectives of this project, the resulting software should be able to trace the project

requirements and its resources. As mentioned before, the resources of a project are: Time,

Budget, Human Resources, Hardware Resources, and Software Resources. It is supposed that this

project should manage all of these resources and their effect on each other. It is important to say

after collecting the answers from the participants, the total average of 9 questions is 7.07 that

shows is above the average value and is considerable. Although this software fulfill the

mentioned objectives such as tracing the requirements and resources, resource sharing,

monitoring resources and also is real time. The main target of this project was about user friendly

that any people with low knowledge can also work with it, where is clear based on gained results

in part V. The result software of this project is represented to a small team of the IT experts. The

overall feedbacks are toward the positive and more satisfying values.

Advantages

The strongest feedbacks are on ease of use of the software, fulfillment of the purpose of the

software, and the look and feel of the application.

Limitations

The weakest feedbacks are one the collaboration of other users with the software, the account

setup experience, and integration with other applications.

In future work, based on comments mentioned in the questioner part, defining more than one

user as a project manager in the application and customizable timing of the work stations in

Software Information Collector can be considered.

Örgütsel Davranış Araştırmaları Dergisi
Journal of Organizational Behavior Research
Cilt / Vol.: 8, Sayı / Is.: S, Yıl/Year: 2023, Kod/ID: 23S0-1014

12

ACKNOWLEDGMENTS: So many thanks to my family especially my father Abdolrahim Andisheh

that supported me every moment of my life and my mother Effat Rahmani with her

Compassionate heart , I truly don't know what I would have done without you

CONFLICT OF INTEREST: None

FINANCIAL SUPPORT: None

ETHICS STATEMENT: None

References

Alexander, I. (2002). Towards automatic traceability in industrial practice. Proc. of the 1st Int. Workshop

on Traceability, Citeseer.

Antoniol, G., G. Canfora, G. Casazza, A. De Lucia and E. Merlo (2002). "Recovering traceability links

between code and documentation." IEEE transactions on software engineering28(10): 970-983.

Asuncion, H. U., A. U. Asuncion and R. N. Taylor (2010). Software traceability with topic modeling.

Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume

1, ACM.

Asuncion, H. U., F. François and R. N. Taylor (2007). An end-to-end industrial software traceability tool.

Proceedings of the the 6th joint meeting of the European software engineering conference and the

ACM SIGSOFT symposium on The foundations of software engineering, ACM.

Bakhitar, A., A. Hannan, A. Basit and J. Ahmad (2015). „Prioritization of value based services of software

by using Ahp and fuzzy KANO model.”. International Conference on Computational and Social

Sciences.

Boehm, B. W. (1984). "Verifying and validating software requirements and design specifications." IEEE

software1(1): 75.

Brown, R. B., G. Beydoun, G. Low, W. Tibben, R. Zamani, F. García-Sánchez and R. Martinez-Bejar

(2016). "Computationally efficient ontology selection in software requirement planning."

Information Systems Frontiers18(2): 349-358.

Chen, J.-Y. and S.-C. Chou (1999). "Consistency management in a process environment." Journal of

Systems and Software47(2): 105-110.

De Gea, J. M. C., J. Nicolás, J. L. F. Alemán, A. Toval, C. Ebert and A. Vizcaíno (2012). "Requirements

engineering tools: Capabilities, survey and assessment." Information and Software

Technology54(10): 1142-1157.

Egyed, A. (2006). Tailoring software traceability to value-based needs. Value-Based Software Engineering,

Springer: 287-308.

13

Egyed, A. and P. Grünbacher (2005). "Supporting software understanding with automated requirements

traceability." International Journal of Software Engineering and Knowledge Engineering15(05):

783-810.

Garcia, J. E. and A. C. Paiva (2016). "A Requirements-to-Implementation Mapping Tool for Requirements

Traceability." Journal of Software11: 193-200.

Gervasi, V. and D. Zowghi (2005). "Reasoning about inconsistencies in natural language requirements."

ACM Transactions on Software Engineering and Methodology (TOSEM)14(3): 277-330.

Gotel, O. C. and C. Finkelstein (1994). An analysis of the requirements traceability problem. Requirements

Engineering, 1994., Proceedings of the First International Conference on, IEEE.

Grechanik, M., K. S. McKinley and D. E. Perry (2007). Recovering and using use-case-diagram-to-source-

code traceability links. Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations of software

engineering, ACM.

Hayes, J. H., A. Dekhtyar and S. K. Sundaram (2006). "Advancing candidate link generation for

requirements tracing: The study of methods." IEEE Transactions on Software Engineering32(1):

4-19.

Kaindl, H., S. Kramer and P. S. N. Diallo (1999). Semiautomatic generation of glossary links: A practical

solution. Proceedings of the tenth ACM Conference on Hypertext and hypermedia: returning to

our diverse roots: returning to our diverse roots, ACM.

Lu, C.-W., C.-H. Chang, W. C. Chu, Y.-W. Cheng and H.-C. Chang (2008). A requirement tool to support

model-based requirement engineering. 2008 32nd Annual IEEE International Computer Software

and Applications Conference, IEEE.

Maletic, J. I., M. L. Collard and B. Simoes (2005). An XML based approach to support the evolution of

model-to-model traceability links. Proceedings of the 3rd international workshop on Traceability

in emerging forms of software engineering, ACM.

Mohan, K. and B. Ramesh (2002). Managing variability with traceability in product and service families.

System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International Conference

on, IEEE.

Munson, E. V. and T. N. Nguyen (2005). Concordance, conformance, versions, and traceability.

Proceedings of the 3rd international workshop on Traceability in emerging forms of software

engineering, ACM.

Nawrocki, J., M. Jasiñski, B. Walter and A. Wojciechowski (2002). Extreme programming modified:

embrace requirements engineering practices. Requirements Engineering, 2002. Proceedings.

IEEE Joint International Conference on, IEEE.

och Dag, J. N., B. Regnell, P. Carlshamre, M. Andersson and J. Karlsson (2002). "A feasibility study of

automated natural language requirements analysis in market-driven development." Requirements

Engineering7(1): 20-33.

Örgütsel Davranış Araştırmaları Dergisi
Journal of Organizational Behavior Research
Cilt / Vol.: 8, Sayı / Is.: S, Yıl/Year: 2023, Kod/ID: 23S0-1014

14

Pinheiro, F. d. A. C. (1997). Design of a hyper-environment for tracing object-oriented requirements,

University of Oxford.

Pohl, K. (1996). PRO-ART: Enabling requirements pre-traceability. Requirements Engineering, 1996.,

Proceedings of the Second International Conference on, IEEE.

Ramesh, B. and M. Jarke (2001). "Toward reference models for requirements traceability." IEEE

transactions on software engineering27(1): 58-93.

Richardson, J. and J. Green (2004). Automating traceability for generated software artifacts. Proceedings

of the 19th IEEE international conference on Automated software engineering, IEEE Computer

Society.

Schwaber, C., G. Leganza and M. Daniels (2006). "The Root of the Problem: Poor Requirements." IT View

Research Document, Forrester Research, September.

Shah, T. and S. Patel (2014). "A Review of Requirement Engineering Issues and Challenges in Various

Software Development Methods." International Journal of Computer Applications99(15): 36-45.

Sommerville, I. and P. Sawyer (1997). Requirements engineering: a good practice guide, John Wiley &

Sons, Inc.

Van den Brand, M. and J. F. Groote (2015). "Software engineering: redundancy is key." Science of

Computer Programming97: 75-81.

Whittle, J., J. Van Baalen, J. Schumann, P. Robinson, T. Pressburger, J. Penix, P. Oh, M. Lowry and G.

Brat (2001). Amphion/NAV: Deductive synthesis of state estimation software. Automated

Software Engineering, 2001.(ASE 2001). Proceedings. 16th Annual International Conference on,

IEEE.

Wiegers, K. E. (1999). "Automating requirements management." Software Development7(7): 1-5.

Winkler, S. and J. Pilgrim (2010). "A survey of traceability in requirements engineering and model-driven

development." Software and Systems Modeling (SoSyM)9(4): 529-565.

Zisman, A., G. Spanoudakis, E. Pérez-Miñana and P. Krause (2003). Tracing Software Requirements

Artifacts. Software Engineering Research and Practice.

